Some Antenna Theory

Just a little to get us going

Rocky Mountain Ham University - 2025 - Chris Hamilton AE5IT

What is electromagnetic radiation?

Alternating current

Charges (electrons) wiggle back and forth in a wire The *continuous change* in current produces electromagnetic waves Waves radiate into the universe forever

Eventually encounter another wire & cause those electrons to wiggle

Free Space Path Loss

Measuring Gain & Loss:

Decibels (dB) are used to compare two power levels

-10 dB	1/10 the power	10%
-3 dB	Half the power	50%
0 dB	Identical power	100%
+3 dB	Double the power	200%
+7 dB	5x the power	500%
+10 dB	10x the power	1,000%
+20 dB	100x the power	10,000%
+30 dB	1000x the power	100,000%

dB is only meaningful if you know the point of comparison!

+3 dBi means double the power relative to *isotropic* +3 dBd means double the power relative to *dipole*

Decibels are confusing at first but have advantages: Big numbers & small numbers in the same conversation Math is much easier (trust me)

Gain & Pattern of a dipole antenna

Azimuth

Elevation

E. S. Pires et al

Gain & Pattern of a collinear antenna

Gain & Pattern of a directional antenna

Augustine Nguyen, Mouser.com

Impedance

Ratio of Voltage : Current

Impedance Matching

Characteristic impedance: the ratio of voltage & current where a *feedline* is happiest *Depends on material, size, shape of feedline*

Impedance Matching

Move feedpoint for construction convenience – but feeding becomes a new challenge

Coaxial cable 50 or 75 ohms

Very bad mismatch Thousands of ohms

Big reflections - High SWR Coax loss becomes significant

Transmitter may shut down to avoid damage

Impedance Matching

Insert Antenna Tuner or other transformer system between low-impedance coax and high-impedance antenna feedpoint

This can work well!

But details matter a lot

Resonance

Antenna length and frequency are perfectly matched *impedance is purely resistive*

Mostly don't worry about this today

Resonance is not necessary for good performance. Lots of good non-resonant antenna designs. EFRW, 43' vertical, multiband doublet, etc

Resonance is mostly not related to SWR

BUT

Resonant antennas are:

- **Predictable (usually)**
- Simple to build (usually)
- Simple to feed (usually)
- A pretty good place to start learning

Dan receives very weakly or not at all (20 dB loss from severe polarity mismatch)

BUT! Polarization matters less at HF due to ionophere randomization

AE5IT 2025